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Abstract

-'Necessary and sufficient conditions for identifiability of the

diffusion coefficient in Galerkin approximations to a two point

boundary value problem are derived for various choices of Galerkin sub-

spaces. The results are further used to investigate output least squares

identifiability and output least squares stability of the diffusion co-
/

efficient. , -.. - ,

Key Words: Parameter estimation;, stability of output least squares

problem, boundary v e problem.
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Identifiability Under Approximation for an

Elliptic Boundary Value Problem

1. Introduction

In this note we study the following boundary value problems:

-(aux) x + cu =f in (0,1)

u x(0) - ux (1) = 0.

2
Let I = (0,1) and f E L (I). Recall that if a E HI(I) with a(x) >

a > 0 and c E L 2(I) with c(x) > c > 0 a.e., then there exists a

unique solution u = uCa) of (1.1) in H2 (I). We are concerned with

the identification of the coefficient a, given information of the solu-

tion uCa) and in particular we will study the injectivity of the mapping

aM * uN(aM) where aM is some approximation to a and uN an approxi-

mation to u. At first we describe the problem in a more general context.

Let V': H2(I) * Z be a continuous linear operator from the solution

space to the observation space Z describing the type of available

information of the state u. To determine the coefficient corresponding

to an observation z E Z of the system that is modelled by (1.1) the

following output least squares formulation is used frequently:

(1.2) minimize [u(a) - zIZ.

Sad

E Here the set Qad of admissible parameters is chosen such that the

existence of a solution of (1.2) is guaranteed.

4.
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For example, if n observations {zk})n, taken at the points

{xk~kl are available, we may take Z -Rn with 2-*: H 2(1) 30 de-

(1.3) minimize n u(xka) z 2

Alternatively one might have distributed observations z E L2(I), or

using the data {zln at {x )n. one might want to obtain a functionk k k k 1

z E L (1) either by interpolation or least squares regression; for '

we would then take Slou = u and the optimization problem becomes

(1.4) minimize lu~a) -z1
2 .

~adL

In either case an appropriate choice for Q ad would be

Qad = (a E a(x) I a > 0, jiH 1 < )

with y> a, (6].

Defining the attainable set 'Vo tG(i(a): a C QadI one may view

the optimization problem (1.2) as having two parts:

(i) given z C Z find z roj. the projection of z on

(ii) given z proj find a E Q ad such that .-'u() = z proj'

Assuming the existence of z proj' the uniqueness of z proj depends

on the geometry of %.In (ii) there exists an a such that Vu(')

* Zro by definition of Qa The question of uniqueness of such ana

* arises and it is guaranteed if 0: a V.r~u(a) is injective at a.
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Injectivity of t at i is called identifiability of a at a. The

above mentioned uniqueness problems are rather involved in general, see,

e.g., [2; 7, Appendix], and [11] for a hyperbolic equation.

When solving (1.2) on a computer it is necessary to replace (1.1)-

(1.2) by a finite dimensional problem. This is done by approximating both

the solutions of (1.1) and the set Qad by functions from finite dimen-

sional function spaces. A finite dimensional version of the minimiza-

tion problem (1.2) is then solved to obtain an estimate for the unknown

coefficient a (compare e.g., [1], [5]). Again the existence and unique-

ness questions analogous to the two steps (i) and (ii) above can be con-

sidered.

The main purpose of this investigation is the study of the uniqueness

for the finite dimensional analog of (ii). If for a chosen approximation

of a by a the mappings a * u (a M ) is injective at a, then a is

called identifiable under approximation at aM . The related question

for parabolic equations in dimension one has been treated in [4].lH
Our results below indicate that the injectivity of aM  depends

upon certain rank conditions that imply compatibility conditions upon

the spaces used to approximate the coefficient a and the solution u(a).

It will be seen that a may be identifiable under approximation without

the known sufficient conditions for identifiability of a in (1.1) being

satisfied [9]. The results here, although depending on the choice of Neumann

boundary conditions can easily be adapted to different boundary conditions.

In section 2 we formulate the discrete problems and give general con-

ditions for identifiability under approximation. In section 3 we examine

several concrete examples and obtain necessary and sufficient conditions

-%
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for identifiability under approximation for these cases. Identifiability

will be guaranteed if there is a sufficient amount of movement in the

observations. On the other hand, if the coefficient is assumed to be

known at points where the observations are stationary, then it can still

be identifiable at the remaining parts of the domain (0,1). Section 4 is

devoted to the problem of continuous dependence of the solution of the des-

cretized version of (1.3) or (1.4) on the observation z and Qad* Sufficient

conditions for output least squares identifiability (OLSI) [2] and output

least squares stability (OLSS) [3] are given. Finally, in section 5 we

report the findings of a numerical experiment that supports the practical

relevance of our results.

I.

|'.

|,

| .



2. Basic Results

To approximate (1.2) by the standard finite element method [10)

let f)N= and { j I l be sets of linearly independent functions
i i 0i j 1

defined on I with B. C H (I) and *. piecewise continuous. Let

AM = span{O. 1 ,...,M) and H N span{B: i = 0,...,N). Setting

N-N
u = ~B and a M. a j .

we have upon integration by parts of (1.1) with u replaced by uN

N N
I Ii aBi~' kx >+ Ii c~,Bk = <f,B k> for k =0,...,N,

i=0 i i=O 1i<B~k

2 M
where <-,> denotes the inner product in L Replacing a b,, a it

follows that

N M N
AO B > + I V.<cB.,B > fB>

i=0 j=l i~x' k,x i=0 1 kk

for k r=0..N

Rearranging the summations in this last expression we arrive at

M N N
(2.1) 1 a. I <0 B ixB k ~ >p * <cBB >Ii C = B

jul J1=00W

for k = 0,... ,N.

We now make the following definitions: H. and K are (N+l) x (N+l)

matrices with the (i,k)-th elements given by
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(H )i,k = BixBk,x> and (K) i,k <cBi,Bk> ,

*:: for i,k = 0,...,N; j = 1,...,M. Similarly E cA N I  EI N I  and

-M M
a EIR are given by

Ct) <fBand M M
S(f)k = <f'Bk>' M i = VIi and ( )j =a..

3 j

With this notation (2.1) becomes

M
*" (2.2) A a + KD =

j=l :

where we used the symmetry of H. and K. Thus we obtain a mapping
3

..M -J.MNlM N M
a -, i(a from M  into J N I  or, equivalently, a -0 u (a 4 )

M M M N
a = a , from A to H , that is well defined as long as

M j--1
A + K is invertible. For example, if c > 0 and {B. 1.
I " i'x i=O

are linearly independent, then aMH. + K is invertible for all

j=l 3j

a E A - {M E R: I a)$ > 0 on I).
j=l

. .

Oo...



Similarly, if c > y > 0 as assumed throughout, then again la H. + K

is invertible for all aM E A.

We now define identifiability of -M = col(al,...,ak) in (2.2).

Definition 2.1. The parameter aM E A in (2.2) is called identifiable

if D(aM) =ji(b) implies aM = ;M for all b E A.

For a specific choice of approximation of a in (1.1) by a , we

M M
say that a is identifiable under approximation at a if a is

identifiable.

,-Th or m .1 Le { j M a d Bi N
Theorem 2.1. Let and be linearly independent,

M -M
C(X) > c > 0 and M E A. Then a E A is identifiable if and only if

the vectors {Hja are linearly independent.

Proof. Using (2.2), linear independence of Hj1(a )  clearly implies
~M

identifiability of a . Conversely assume that there exists a nontrivial

vector (aI ,...,aM) EIR with

M -

(2.3) 1 ajH p(aM) = 0.
j=l

M I -M
Then (. - Eca) > 0 for some sufficiently small E > 0 and a1

j=l M saf
given by . satisfies a E A. Multiplying (2.3) by Egivn ), al j = j- a

and subtracting it from (2.2) we find that () (). This ends

the proof.

N~l N+lSince H.:IR - IR , for j = 1,. ..,M, we have the following:

-M
Corollary 2.1. If M > N+l, then a in (2.2) is not identifiable.

..... . ... ...... ..g '.." .'. -" - j%. ' 'e ' .'.-'. '.. .- -'-'- -'- '. .'." .' -'-.' "- ..-. .-.. .-. ."-. .-. .-.. .-. .".. ..-. .-.-.--.-- . . . . . . . . . .
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Corollary 2.2. If E Ker(H.) for some j = 1,...,M, then aM

is not identifiable.

Proof. If V(1M) E Ker(H.) then the set {H jVA )=M is linearly

dependent and the result follows from Theorem 2.1.

Remark 2.1. Corollary 2.2 should be compared with the condition

IU I > k > 0 which is known to be a sufficient condition for identifi-

ability of a in the infinite dimensional problem (1.1) [9].

Definition 2.2. The coordinates {a. I of the parameter vector

e A are called identifiable if .CjM) = ) and a. = b. for

all j jk, k = 1,...,M imply a a bM, for all bM C A.

Proposition 2.1. The coordinates {1 Ikl of a E A are identifiable

if and only if the vectors (H W -M)I)M are linearly independent.

The proof is obvious from that of Theorem 2.1.

".1
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3. Several Examples

In this section we consider several concrete examples and determine

their identifiability properties. We point out that here we use N to

denote the number of subintervals of I and N and M of the previous

section are a function of this N.

Case 1. Let I be partitioned into N subintervals of length 1/N.

For i = 0,...,N define the linear spline basis functions

Si-l i
Nx-i~l, - < x <-

(3.1) Bi (x) = -Nx+i+l, < x < N i,

j 0 otherwise,

and for j = 1,...,N the 0-th order splines

(3.2)(x) N - -N

0otherwise.

Thus N and M of the previous section are both N here.

We approximate the solution u of (1.1) by linear splines and

the coefficient a by constant splines. It is straightforward to com-

pute the (N l) x (N l) matrices H., j =,...,N:

.................................................................
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J-1

0 ID
00

H. = N 1 -1 .

0

0*0

Let M = i(a ) = col( 0 ,...,uN) with iM E A. Then

0

0

H 3 N u j- 1  j ... j-1

" ,j-1 ... 3

0

0

Now set 0. = U. i-l for j = 1,...,N. To study the linear

Nindependence of the vectors (H$} note that

CHIU,..., H) NB

where B is the (N+I) x N matrix

I-.



B 0 020

0 N-1l

0 N-1l O

0 0

Lemma 3.1. The vectors {H. N are linearly independent if and

only if B 0 0 for all i 1,..N

Proof. It is easily shown that B is row equivalent [8] to

1 0 0

0 1~

B.

0 1

o o

proide Si# 0 for all i and {H N= are linearly independent

1%in this case. Conversely, if 80 0 for some i, then the column rank

I.of B is less than N and linear dependence of {H ~N= follows.

_MM

"i-1 (a ) for all i = 1,... ,N.

Proposition 3.1. T1he coordinates )~M of aM aeietiibei

and nly f i~. rM ~ 1 %M k kal
and~jk onyi) a ' for all k = 1,... ,M.

The interoret~tioi 'f thiq rpqilt is that the narar'eter A can only be

identited at coordinates where the corresponding observations are non-

stationary.
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Case 2. Let N be even and let I be partitioned into subintervals

oflegh hefucios Bi, i =0,...,N, are taken as in (3.1).
of lngt iT.ThefuncioN

Here, however, we define the functions *. for j *1,.., 11 by

1, 2(j-l) x 4 31
1, N N'

I0 otherwise.

Thus M of section 2 is now. We find in this case that the (N+l)

N
(N.1) matrices H., for j- ,., are given by

1 -1 0.
H. =N :-i 2 -1.

.0 -1 l'

0 0

where the first entry of the nontrivial submatrix is in the 2j-2, 2j-2

position of H. With p i(a )=col(v 0 ,..,1IN) as before we have

0

0

1'2j -2 " 2j-1

H~ii2j- - '2j

41j2j- 1 2j

0

0
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where the first nonzero entry occurs in the 2j-2 coordinate. Setting

I =i-Iij l for i a 1,...,N we thus have

0

0
)? "$2j-1

H = N 82j-1 8 2j

82j

0

0

N , . N / 2
for j = 1,..., N To investigate the linear independence of {H j=l

note that

(H 1 ,...,HN/2 D) = NB

where the (N+I) x -matrix B is given by

-0 0 0

81-82 0

2 -83

B 0 83-84..

84

0 0

8N- 1

N-1 0N

L 0 0 8
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and the collection of vectors (H ~)N/2 is linearly independent if andj jl

only if rank(B) a N

Lemma 3.2. In the Case 2 the vectors {H. j/l are linearly independent

Nif and only if 82i-l #0 or B2i # 0 for i 2.

Proof. The matrix B is row equivalent to

81 0 0

82 0

B. 0 83

S84

0 0

-o N-

From this and the fact that the dimension of the column space of a matrix

is equal to the rank of that matrix, the result follows.

Theorem 3.2. In Case 2, a is identifiable if and only if V2i-1 0

N
1'2i-2 or "2i 0 u2i-I for i 2 ,..., .

• 1

Case 3. Let I be partitioned into N subintervals of length .

Again we take the functions Bi, i = 0,...,N to be those defined in

(3.1). Further we set i= Bi, i = 0,...,N. Thus M of section 2 is

N.I here and both 0. and B. are linear splines defined on the same

mesh. In this case the structure of the (Nel) x (N.I) matrices {H N=0
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is slightly more complicated than in Cases 1 and 2. These matrices are

now given as follows:

H ! 1 -l-i

0 2

0 0
with the first entry in the (0,0)-element. For j =1,.. .,N-1 we have

0 0 0

N 1l -1 0.
H -0 -1 2 -1. 0j 2 * l 0

o . 0 .1 0

where the first entry of the nontrivial submatrix appears in the (j-1,

j-1) position of H.. Finally

o
N

00
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-(I1- o) 0

N N
2N T0

0 (UN-UN_1)

IN-I N_1

0

0

Uj_1  - j
H N - 2U V

0

0

where for j = 1,...,N-1 the first entry occurs in row j-1. Setting

i = fi-Ui.I for i = 1,...,N we have

H-81 0

- 8• o
N - N N

0 2 N 2 j
,.l-8 N  8. - 8j+

N j j4-
00 8N 8j+

0

0

.'5 ''- ' ..: ' ', .. " ' ' ' ' ' " " " , " ." , " -" ." , " , " . . -" , • - , • , , ¢ • ., . ' ' . " . " . . - . . , . . .

4"-' -" . , " •. . ." ' -' * - ' 2 " - , ,,; ' " ' ''' " " " .. . e " ." -" ." . .' ' .- . ' .., -,. ' .,. .'' ' '' '' ' '' .' '' ' '
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for j 1 1,...,N-1. To investigate the linear independence of {H jiN
j j=O

note that

N

(H0,.. .,HN) = B,

where the (N+l) x (N+l) matrix B is given by

-B 1  -1 0 0

81 81-82

0 0

B 0

-N I0

-0N-1 0

8N-1 8N N

0 N  N

Performing row operations on B we find the B is equivalent to

1 8 0 0 0

o 02 82

0 83

B= 0 0

0 N-1 0

BN  8N
N N

o o 0 0 0

* -.
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We then see that B has rank less or equal to N and therefore we have

Theorem 3.3. In case 3, 1 E A is not identifiable.

If one decreases the number of *j's in Case 3 then it is reason-

able to expect that sufficient and necessary conditions for the identi-
~M

fiability of a in the spirit of Cases 1 and 2 can be obtained. We

verify this next for a particular choice of N and M. Moreover, in

Section 5 we present a numerical experiment which tends to support this

contention.

Case 4. Let I be partitioned into 2N subintervals of length 1/2N.

We choose the functions B. for i = 0,...,2N as

f 2Nx - i~l, i-I i

::< i+1Bi(x) = -2Nx + i+l, 2N -< x < 2N

0 otherwise.

For the functions . we take

Nx - j-N'[[ [ N -- x- IN

(x)= -Nx + j1, < x < '
N N

0 otherwise,

for j = 0,...,N; thus M of section 2 is N l. The (2N I) x (2N I)-

N
matrices (j0 are given as follows:

S0
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3 -3 0

-3 4 -10

0 -1 1

N

with 3 in the (0,0) element,

1 -1 0 0 0.
N1 4 -3 0 0

H - 0 -3 6 -3 0 0j 2 0.0 0 -3 4 -1
.0 0 0 -1 1.

where the first entry of the nontrivial submatrix occurs in the 2(i-1),

2(i-1)-element and

0 0

H N

1 2-1 *0

0 . -1 4 -3

0 -3 3

M

Let )*col(1Los...,.I 2N) Then we see that

V.N
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0

N 3 -N 1 0
=3 T 4"l " U

0 N

0 2N-2 - P2N-1

"i, ] -2N-2 4 12N= 1 = 3 U2N

0 -3V2N-1 + 3W2N

and for j = 1,...,N-1

0
0

12i-2 " 12i-1

-)2i-2 + 4V 2il - 3V2i
N

H 31 + 6V -
3 21

2j =--32i-1 62i -32i 1

-2i +42i+1 - 2i+2

2i+1 2i+2

0

0

where the first nonzero entry occurs in row 2(i-1). To investigate
~N

the linear independence of {H N 0 we put e.i =  -i for

i = 1,...,2N and observe that

N
(H0 3,...,HN ) = B

,., .
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where the (2N+l) x (N+1) matrix B is given by

-30 1-8 0

3 1802 S1-3 S2 0

82 3082- 303 -83

o3 38 4 8333

84 3084- 385

B = 3 8 SB .. .b

86 0

0 8S2N-3

82N-3382N-2 0

36 2N-2-3 $ 2N-I -B2N-1

3S 2N-1- 2N 02N-1-3 $ 2N

0 0 0 82N 3 2N

Performing row operations on B we obtain an equivalent matrix B:

V38i 0 0 0

82 38 2 0

0 3 0 3 83

a4 3B84

F: B=0 3B~

0 86 0

0 8~2N-30

3B 2N-2 0

* 3 2N-1 82N-1

0 0 0 82 382,

2NZ
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which is of dimension 2N x (N+I). The vectors H P are linearly inde-

pendent if rank(B) - N.I.

Theorem 3.4. In Case 4, if #2-l "21-2 or "2i "2i-1 for all

i = 1,...,N and (1'2i.-112i.2)(V2i-V2i.1) 0 0 for some i = 1,...,N,

where - Ca ,then e" E A is identifiable.

Proof. Let & = col(C0,...,&N) CR a N*  and Ba - 0. Choose i1  such

that 02ii1-.l
0 2i 1 0. Then a = Qil = 0. Further ai = 0 for all

other i, since 02il 0 0 or 02i 0 0. This implies linear independence

of the columns of B and thus of B. Theorem 3.1 then implies the result.

Theorem 3.5. In Case 4, if UI " 0 = U2 " l = 0 or VN- -U

U " N-I = 0 or 12i-1 " 2i-2 = U2i " 1 2i-I = U2il " 1 2i '02 i+ 2 "

12il - 0 for some i = 2,...,N-2, where U = j(C) then E A is not

identifiable.

Proof. Under the assumptions of the theorem the column-rank of B is

not maximal and this implies the result.

Remark 3.1. Four consecutive zeros in the I.'s do not necessarily

imply nonidentifiability, provided the zeros start with an even index

and are not at the "beginning" or "end" of the sequence {8l; in

particular B2iinB =  2 i =0 with 2 < i < N-2 does2 82i+1 ' 2i+2 '021.3

not imply nonidentifiability. For example let N = 5, BI = 82 = 83 =

08 = 19 010 • 1 and 84 = es = 86 = B7 a 0. Then {Hj }, j - 0,...,N,

with 0i = , i' i-1' are linearly independent. Choosing 0 and aM

we can thus calculate Ui. i - 1,....2N and f such that aM is

identifiable and 02i • " 2i.3 .0.

2i8 i+
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Remark 3.2. The conditions of Theorems 3.1 - 3.4 are conditions on the

variation of adjacent Ui (i-values. If this variation is sufficient,

the identifiability of M is guaranteed. The results indicate that

the larger the difference between the dimension of the state space approxi-

mation and the dimension of the parameter space approximation is, the

more likely it is that identifiability of the approximated coefficient

holds. In [9] identifiability of a in (1.1) is studied under various

conditions on the sign of u and uxx. The most general condition im-

plying identifiability of a is inf (max lUxi, uxx) > 0. Clearly one
I x x

can construct examples where this condition is not met but identifiability

under approximation, e.g., according to one of the cases 1 - 4, of

holds.

ro

p'
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4. Two Stability Concepts

In this section we discuss the application of two concepts of sta-

bility to the finite dimensional output least squares problem

(P1N minimize Iu(aj _ z1 over C,

where C is a convex and closed subset of

QH a . a ER aM(x) >a > o, laM1Hl <y
adM a"jul a

and iou cn (he vBsth c o S .. ad heesatat rtesfirst (2.2).iThe

guaneed uniqerness of Qsolutions o con)sid eqre and mthi apomting

Scoefficients, some remarks on L approximations are given further

below. We investigate the continuous dependence of a* on z and also

M
on Qad when dealing with the second stability concept. For C c Q

ad ad

let 91(C) = {uN(a: aM E C) denote the attainable set.

Definition 4.1. [2] The parameter aM  in (2.2) is called output least

squares identifiable (OLSI) by (P ) over C c gad' if there exists a

neighborhood 9 of V/(C) such that for every z C 91 the problem (P)

has a unique solution a, depending continuously on z.

Let Ainj c Qad be such that {H a is linearly independent

for every aM  .( )* E Ainj* As examples for such sets we can

j, 2 ~~... ..... ........... . . ....- ..... ... .. . . .. . . , , , . , . .- , , , " , _
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take neighborhoods in Qad of points of identifiability in the sense

of section 2.

M
Theorem 4.1. Let Ainj be as just described. Then a in (2.2) is OLSI

N
by (P N over every closed convex subset C of Ainj, provided that

diam C is sufficiently small and z is sufficiently close to the '/(C).
N M

More precisely, (P N has a unique solution a, depending Lipschitz-

continuously on z as long as dist(z,9''C)) is sufficiently small.

Proof. By ([2], Theorem 4) it suffices to show that aM  uN (a M ) is

twice continuously Fr~chet differentiable with aM  u M(a M ) injective
a

on C. This is equivalent to the existence of continuous first and

~N MMsecond order derivatives of 1 a( ) with a such that

M M
I A = a M E A. . and injectivity of for every aM E C.
j=1 J 3nj a

Let M(a ;h) = and i~MC ;h,k) = be the first, resp. second,
a a

derivative in directions h and (hk)• Then

(4.1) =-L 1 (Eh H

and

(4.2) 1 (Ek H. E h Hj M(aM;k)),

where L = E a.H. + K and h = col(hl,...,hM) k = col(kl,... ,kM),
J3

and the continuity assumptions follow. The injectivity of M(-M) is

guaranteed by linear independence of {H i W(M)J; this ends the proof.

To describe the second notion of stability we consider the case

M
C = Qad:

• .•-.~~~~~~~~~~~~~~~~~~~~~~~~~.-......?..€... ......... . ... •.....- <...........• ...-.......-...-.....-...... -............................. .. * *...%.* -
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(p w  minimize IuN(a - z12 over Qad2

We study continuous dependence of local solutions of (P )w on

w = (z,a,6) E W, where W = H x R x3R. Here W is endowed with the

Hilbert-space product norm. We always assume 0 < a < y, so that QaM

is not empty and solutions of (2.2) and (P ) exist.M)w

Definition 4.2. [2] The parameter aM  is called output least squares

M M N 0(OLS)-stable in Qad at the local solution a0 of (PM) 0 ' 
w E W,

0. w

if there exists a neighborhood V(w ) of w in W, a neighborhood

V(a0) of a in H and a constant K, such that for all w = (z,a,y) E

0 o aN MV(w ) there exists a local solution aw of (P1 )w with a wE V(a0)

and for all local solutions aw 0 of ( we have

1i/2

IaM - aoI- 1 < ICWwwOIw
W w H

Remark 4.1. In comparing OLSI to OLS-stability we observe the following

differences: OLSI requires uniqueness of the solutions of the minimiza-

tion problem, whereas for OLS-stability, uniqueness is not required, with

continuity being checked at each local solution. If OLSI holds, then

the solutions depend on the observations in a Lipschitz continuous way,

whereas OLS-stability only guarantees HWlder continuous dependence.

Further, OLSI requires continuous dependence of the solutions on the

observation only, whereas OLS-stability involves continuous dependence on

the observations as well as on the admissible set Qad*

.
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Output least squares stability is proved by techniques that guar-

antee stability of solutions of abstract optimization problems with res-

pect to perturbations in the problem data, see [2] and the references

given there. Let AM - span {4j j= and let F(aM) be the Lagrange

N
functional associated with (PM):

F(aM)- luNCaM) - z12 - *g(aM)

r where X E C* x]R and

g: AM X W- CxR is given by

g(aMw) = (a-a Ia I 1 - Y ), w = (z,a,y).

L A

Note that am E Qad(w) if and only if g(aM,w) E K = C x R with C

and IR the natural negative cones in C(I) and JR. We shall fre-

M ad M
quently drop the index w and write g(a ) and Q for g(a ,w)

M
and Qad w).

Theorem 4.2. Let AM . span{lo} 1  be such that it contains the constant

0 00 0 0 0anle
functions, let (z ,a,y) w E W with 0 < a <0 and let

H MMM
a0  1 (0 ) be a local solution of (PN 0  if {H (a0)}jul are

0 jul 0 o -vectrs n JNWlNM N

linearly independent vectors in I and Iu (a0  - zI is suffici-

ently small, then a is OLS-stable in Q ad(W0 ) at the local solution

aM of (PNa0 (M) o"0

For the proof of this theorem the following lemma on the regularity

of the constraint set Qad will be required; its proof is quite similar

to that of Lemma 4.2 in [2] but will be included for the sake of cor-

pleteness.

2.

..
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Lemma 4.1. Let A contain the constant functions. Then every a' E

Qad is a regular point, i.e., 0 E int{gCaM) -.Q(gm(a K) C C 'In,

where denotes the range of the mapping g M a )

Proof of Lemma 4.1. We need to show that

O E int{g(a) + g M(A)A C x]R
a

(4.3)C.) int{a-aNmhO+C , jM2 y y2 +2<aM,hM:, +RHI  EAI
,,tc.aM:M C= laMI 21 -] * n,: hM C AM),

H H

where we used that g Ma)h= (-hM,2<am,hM>Hl. Let (,r) E C xI
a H

with I(O,r)ICxjR < 6 and 6 > 0 to be chosen sufficiently small.

Note that * - min * C,, and mn E CA . In view of the first com-

ponent in (4.3) we decompose * as

M m
= - a - (a - a - min ) * 0 - min

.MM

and therefore *E a-a M-A M+C. As for the second component in (4.3)

observe that

M-"2 - 2 <a . 1 .IaI >2

Jam 1  y 2 2<aM,ct-a M-min *> '12  + 2<aM,(x-min >1

H H H H

lt 2  y +2 26Ilami V
H

Thus, for 6 sufficiently small one can choose i CM + such that

M1'.2 2 M,2

r = jaH I -- + 2<a N, a - a - min > +

aatand, since (0,r) was arbitrary,, aN is shown to be a regular point.
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Proof of Theorem 4.2. We apply results on the stability of abstract

optimization problems as summarized in section 3 of [2]. Due to the

fact that a - juN (a ) - z012  and a -o g(a Mw 0) are twice continu-

ously at a and since the point a0 E d is a regular point, it
0 0 aadi

suffices to establish a lower bound on the second derivative of F at

- .  N H N M M.M M Mao. Let UN u a;h) and u M(ao;h ,h) for h E A Then
a aa

M MMM N M2M (a0;h , h)= <u (a0) - z + nI20 - 2XIhMIIa ,a H H H

> -ju N (a0 1'z M w Inl2o - 2XjhMI2
H H H H

where X < 0 is the Lagrange multiplier associated with the norm con-

straint. In view of (4.1), (4.2), the finite dimensionality of AM,

and the linear independence of {H (iM)) it follows that there exist

constants cI and c2  such that

M M;h ,h M) -clIuN (a) - zj ojhMi2  + c21hMj 2
a ,a H H H

so that for IuN(aM) - zJ sufficiently small there exists a constant

c3 with

M M M 2aM(aO;h ,h ) Ic3Ih IH;
a a

from which the result follows [2; Theorem 3.2, 3.3].

I-V
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Remark 4.2. If Q dCL ol n a 1 1 H Y is replaced by

- ~ ~ 1 II .y i th deiiino Qad' then again one can show existence

of solutions of (P) and Theorem 4.1 holds with obvious modifications.
9M

The results leading to Theorem 4.2 need yet to be generalized to handle

-the nondifferentiable LW-norm constraint.
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5. Numerical Results

In this section we present some results of a numerical experiment to

estimate the coefficient a in (1.1) given observations z of u. To

~M
solve (1.2) with C = I we consider (2.2) which defines a mapping a

j(aM) for iM E A, and the finite dimensional minimization problems

1l N )
(5.1) minimize o (10 ( - z dx.

~M M
For our experiments we imposed no constraints on a E]R" although

I(a M) is not well defined for some iM. The basis functions *. and

B. were chosen as linear spline functions with equidistant grid on

(0,1). As data z we took the values of a solution of (1.1) by choosing

the coefficient a and the observation z(x) = u(x) = x2 (1-x) 2, and cal-

culating f = u - (au x)x  from it. Using this f we then compute v

from (2.2) as we solve (5.1). For the minimization the Newton-Raphson

algorithm was used.

In our calculations N = 10 represents the number of subintervals

used in the linear spline approximation for the solution of (1.1). Thus

the dimension of the approximation space for the solution is 11. Further

NBI is the number of subintervals of I that determine the linear spline

approximation of a; the dimension of the approximation space for a

is NBI + 1. A necessary condition for identifiability of iM is thus

NBI + 1 < 11, see Corollary 2.1. We show calculations for NBI =

4, 5, 6, 8 - 11, for the choice of a(x) = 1 + x. In the first five cases

good results are obtained. Note that NBI = 5 and N = 10 is a special
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case of Theorem 3.4. In the case NBI = 10, -M is not identifiable by

Theorem 3.3. Numerically this is reflected by the appearance of oscilla-

tions as NBI approaches 10 from below, see the graphs for NBI = 9, 10, 11.

The start-up value for the minimization routine was chosen as a 0 2.

We point out that a different scaling of the axes in the various graphs

N Mwas utilized. We also show the graphs for u (a ), when N = 10 and

NBI = 9, 10, 11. The -graphs for the approximating solutions for NBI =

4, 5, 6, 8 are indistinguishable from NBI = 9.

S-

Ko'° S. °, ' " °° o 'o"o 'o'" € o°o °'. -o'- ., " ' ° ',.'' -'-°.-,°'o..
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FIGURE I FIGURE 2
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FIGURE~ (
FIGURE 5
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FIGURE9
FIGURE A
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